My Math Notebook

Random Notes of Mathematical Proofs by Hiroki Narita
気になった数学の定理の証明のノートをそのつどアップロードしていきます。(成田広樹)

2011/10/28

[61] If B⊂A⊂R^n, f:A→R^m, and a ∈ the closure of B, then: f(x)→b (x→a, x∈B). ⇔ f(x_n)→b (n→∞) for any sequence (x_n) of points in B s.t. x_n→a (n→∞).

https://www.evernote.com/shard/s29/sh/5ba9c949-2df2-4904-849f-dcae40cccafd/596e2bb369518a726be0f5814d9e3b83
Date: 10/28/2011
Categories: analysis, limit, vector, ベクトル, 解析, 極限

2011/10/26

[A2] Axiom of choice (選択公理): For every family {A_λ≠∅}λ∈Λ of nonempty sets, Π_{λ∈Λ} A_λ ≠ ∅

Date: 10/26/2011
Categories: axioms, set theory, 公理, 集合論

[60] For any A ⊂ R^n, b ∈ A. ⇔ There exists a sequence of points in A that converges to b.

https://www.evernote.com/shard/s29/sh/b3bf6ce2-2f62-4b9c-9b0d-63a0b4e88deb/6c2b92dddab0fef9f2c1af6674a603b5
Date: 10/26/2011
Categories: analysis, limit, sequence, vector, ベクトル, 解析, 極限, 数列

2011/10/22

[59] (a_n) converges to a ⇒ Any subsequence of (a_n) also converges to a.

https://www.evernote.com/shard/s29/sh/7cfe1d8c-0c23-4a85-bf2b-2875aac0f407/06684f4b4e8adb179589f3e983027bdd
Date: 10/22/2011
Categories: analysis, limit, sequence, 解析, 極限, 数列

2011/10/21

[58] For a nonnegative term series Σa_n, if there exists l ∈ R ∪ {+∞} s.t. a_{n+1}/a_n → l (n → ∞), then Σa_n converges if l < 1, and Σa_n diverges if l > 1.

https://www.evernote.com/shard/s29/sh/6d93b03e-5842-4301-bf2e-64574de00c33/3ead698a49bac72999dcc8d6f81a27dc
Date: 10/21/2011
Categories: analysis, limit, series, 解析, 級数, 極限

2011/10/18

[57] For any nonnegative term series Σa_n, [0≦∃k<1. ∃m∈N. ∀n∈N. n≧m ⇒ (n√a_n ≦ k ∨ a_{n+1}/a_n ≦ k)] ⇒ Σa_n converges.

https://www.evernote.com/shard/s29/sh/b5fc9d77-98ad-415e-bf5a-c12b66af0577/7442e7245e0720d417c5c0c75ed99748
Date: 10/18/2011
Categories: analysis, limit, series, 解析, 級数, 極限

2011/10/17

[56] If z∈C and |z| > 1, then Σz^n diverges.

https://www.evernote.com/shard/s29/sh/46d80a96-1cb9-42ef-95dc-220f1306b0f5/65037777da64feabad96e524519b84f6
Date: 10/17/2011
Categories: analysis, complex number, limit, series, 解析, 級数, 極限, 複素数

2011/10/16

[55] If z∈C & |z|<1, then Σz^n converges to 1/1-z.

https://www.evernote.com/shard/s29/sh/d472bffb-4b6e-42d1-b1d3-fb75f1aee008/cdc8968f534313a7d0cdf695a91db091
Date: 10/16/2011
Categories: analysis, complex number, limit, series, 解析, 級数, 極限, 複素数

2011/10/14

[54] 0≦x≦1 ⇒ x^n → 0 (n → ∞)

https://www.evernote.com/shard/s29/sh/96b21d75-e2d1-49fe-8a14-b62ac4bf9127/293e03f0947b7a338d606efe5378208c
Date: 10/14/2011
Categories: analysis, limit, 解析, 極限

[53] Limit comparison theorem/極限に関する比較定理

https://www.evernote.com/shard/s29/sh/70ff849c-7247-493d-8c3c-ea759405624e/c44fe7b65e87788ff92a66ce01faaff5
Date: 10/14/2011
Categories: analysis, limit, sequence, series, 解析, 級数, 極限, 数列

2011/10/13

[52] A nonnegative term series Σa_n converges ⇔ The sequence of partial sums (S_n)n∈N is bounded above.

https://www.evernote.com/shard/s29/sh/4863f174-7629-43d8-be17-672a59ba6ced/c76ada5da43dd99b3bf888581ebf0d15
Date: 10/13/2011
Categories: analysis, limit, sequence, series, 解析, 級数, 極限, 数列

2011/10/12

[51] If Σa_n converges, then a_n → 0 (n → ∞)

https://www.evernote.com/shard/s29/sh/cac04f48-e0ef-4328-ab15-d7e7b21e3a8e/b5a800b9a9bbedea37837f83f08969aa
Date: 10/12/2011
Categories: analysis, limit, sequence, series, 解析, 級数, 極限, 数列

2011/10/11

[50] Cauchy's Convergence Criterion on Series: A sequence of partial sums is convergent iff it is Cauchy.

https://www.evernote.com/shard/s29/sh/778c319e-040b-4bea-b21c-25af5b3c5cf8/00a97e33a2f30933fed6abb42d8ad157
Date: 10/11/2011
Categories: analysis, limit, sequence, series, 解析, 級数, 極限, 数列

2011/10/10

[49] A sequence of points in R^n converges ⇔ It is a Cauchy sequence.

https://www.evernote.com/shard/s29/sh/f09e5c90-c804-4f47-8139-57cdc1d4549f/6c8ee2cae62e18d71a885348b9ba0923
Date: 10/10/2011
Categories: analysis, limit, sequence, series, vector, ベクトル, 解析, 級数, 極限, 数列

2011/10/09

[48] Geometric series/等比数列の和 Σa_k = a(1-r^n) / 1-r (when r≠1)

https://www.evernote.com/shard/s29/sh/f2c30088-c485-424e-8502-fdb56c95c1cf/4d51d96ffbca186c2401ea9966d4b1bf
Date: 10/09/2011
Categories: sequence, series, 級数, 数列
新しい投稿 前の投稿 ホーム
登録: 投稿 (Atom)

Categories

  • algebra (2)
  • analysis (50)
  • arithmetics (1)
  • axioms (2)
  • complex number (2)
  • continuity (4)
  • differentiation (7)
  • factorization (1)
  • field theory (1)
  • limit (39)
  • number theory (15)
  • prime numbers (3)
  • sequence (26)
  • series (13)
  • set theory (1)
  • trigonometry (9)
  • vector (9)
  • ベクトル (9)
  • 因数分解 (1)
  • 解析 (51)
  • 級数 (13)
  • 極限 (36)
  • 極大値 (1)
  • 公理 (2)
  • 三角関数 (9)
  • 四則演算 (1)
  • 集合論 (1)
  • 数列 (26)
  • 数論 (15)
  • 素数 (3)
  • 体論 (1)
  • 代数 (2)
  • 微分 (7)
  • 複素数 (2)
  • 連続 (4)

Popular Entries

  • ブログ移転のお知らせ
    成田です。この度新しくホームページを立ち上げ、ブログを移転することにしましたのでお知らせ申し上げます。こちらのブログはいずれしかるべき時に閉じようと思いますのでご了承ください。今後ともどうぞよろしくお願いします。 新しいホームページは http://hirokinarita....
  • [35] The Bolzano-Weierstrass theorem Every bounded sequence has a convergent subsequence./ボルツァーノ・ワイエルシュトラスの定理 有界列は収束する部分列を持つ。
    https://www.evernote.com/shard/s29/sh/664daec1-f9f7-4cbf-a095-669f4a20a3da/c0079223080bbd3cf3b35d606375ea1e
  • [73] If there exists b = lim f(x_n) for an arbitrary sequence (x_n| x_n → a, n → ∞), then b is unique for all (x_n).
    https://www.evernote.com/shard/s29/sh/cd85a330-27a7-48ef-bf8d-112d0a80acf5/1b5a733aead4e22bfb97a5f2d5cdc530
  • [18] x + y + z = π (half circle) & x,y,z ≠ π/2 ⇒ tanx + tany + tanz = tanx・tany・tanz
    http://t.co/euqynBA http://t.co/fVTSnSx
  • [53] Limit comparison theorem/極限に関する比較定理
    https://www.evernote.com/shard/s29/sh/70ff849c-7247-493d-8c3c-ea759405624e/c44fe7b65e87788ff92a66ce01faaff5
  • [36] Every Cauchy sequence is bounded. / コーシー列は有界である。
    https://www.evernote.com/shard/s29/sh/b54545ea-0690-48bf-b032-087b68db573c/b103cafcd1e6c8b2e191f17738c1c201
  • [30] [Nested interval theorem/区間縮小法(2)] ∀n∈N. [a_n, b_n] ⊃ [a_n+1, b_n+1] ∧ b_n - a_n → 0 (as n → ∞) ⇒ ∃c∈R. ∩_n∈N [a_n, b_n] = {c} ∧ a_n, b_n → c (as n → ∞)
    http://www.evernote.com/shard/s29/sh/62196813-6786-497f-b308-2e8a7efe2cf5/c032cc13c1673d3a4ea2cd73db15a6f2
  • [15] The sum-to-product identities of trigonometric functions/三角関数の和積の公式
    http://t.co/wuRn5jR
  • [58] For a nonnegative term series Σa_n, if there exists l ∈ R ∪ {+∞} s.t. a_{n+1}/a_n → l (n → ∞), then Σa_n converges if l < 1, and Σa_n diverges if l > 1.
    https://www.evernote.com/shard/s29/sh/6d93b03e-5842-4301-bf2e-64574de00c33/3ead698a49bac72999dcc8d6f81a27dc
  • [10] If {a_n} and {b_n} converge to a and b, respectively, then for any n∈N, if a_n≦b_n then a≦b./数列{a_n}, {b_n}がそれぞれa,bに収束するとき、任意のn∈Nに対しa_n≦b_nが成り立つならばa≦bである。
    http://t.co/sO62Jsk

Page Views

Blog Archives

  • ►  2012 (4)
    • ►  4月 (1)
    • ►  3月 (1)
    • ►  1月 (2)
  • ▼  2011 (72)
    • ►  12月 (2)
    • ►  11月 (7)
    • ▼  10月 (15)
      • [61] If B⊂A⊂R^n, f:A→R^m, and a ∈ the closure of B...
      • [A2] Axiom of choice (選択公理): For every family {A_λ...
      • [60] For any A ⊂ R^n, b ∈ A. ⇔ There exists a sequ...
      • [59] (a_n) converges to a ⇒ Any subsequence of (a_...
      • [58] For a nonnegative term series Σa_n, if there ...
      • [57] For any nonnegative term series Σa_n, [0≦∃k<1...
      • [56] If z∈C and |z| > 1, then Σz^n diverges.
      • [55] If z∈C & |z|<1, then Σz^n converges to 1/1-z.
      • [54] 0≦x≦1 ⇒ x^n → 0 (n → ∞)
      • [53] Limit comparison theorem/極限に関する比較定理
      • [52] A nonnegative term series Σa_n converges ⇔ Th...
      • [51] If Σa_n converges, then a_n → 0 (n → ∞)
      • [50] Cauchy's Convergence Criterion on Series: A s...
      • [49] A sequence of points in R^n converges ⇔ It is...
      • [48] Geometric series/等比数列の和 Σa_k = a(1-r^n) / 1-r...
    • ►  9月 (9)
    • ►  8月 (24)
    • ►  7月 (15)

Who am I?

Hiroki Narita
(Personal Website)

詳細プロフィールを表示

Twitter

「Awesome Inc.」テーマ. Powered by Blogger.