2011/08/23

[33] 2^n → +∞, 1/2^n → 0 (as n → ∞)

https://www.evernote.com/shard/s29/sh/c4e46234-9514-4b2e-9aae-1ca14cf90aef/5177a887660a1f2a72ee2d016080e81e

[0032] 1/n → 0 (as n → ∞)

https://www.evernote.com/shard/s29/sh/8eb4c32e-0d4e-468c-b021-d116822dcae6/27f4d3221cfa469535e3eb9415c24c4e

[31] a>0 ⇒ na → +∞ (as n → ∞) (⇔[25] Archimedean Principle)

http://www.evernote.com/shard/s29/sh/c9197384-e140-4f42-9c6a-a1c19e41e308/be0b8575b4e951c053468554330c353c

[30] [Nested interval theorem/区間縮小法(2)] ∀n∈N. [a_n, b_n] ⊃ [a_n+1, b_n+1] ∧ b_n - a_n → 0 (as n → ∞) ⇒ ∃c∈R. ∩_n∈N [a_n, b_n] = {c} ∧ a_n, b_n → c (as n → ∞)

http://www.evernote.com/shard/s29/sh/62196813-6786-497f-b308-2e8a7efe2cf5/c032cc13c1673d3a4ea2cd73db15a6f2

[29] [Nested interval theorem/区間縮小法(1)] For a sequence of closed bounded intervals {I_n} s.t. I_n ⊃ I_n+1, there is a real number that belongs to all I_n.

http://www.evernote.com/shard/s29/sh/6e8ba429-4fc1-40bd-b924-2e4336cc8a76/c1fa72632d4dcf9c811bb67f1187f83b

[28] For an ordered field K, ∀a,b∈K. a≦b ∧ c≧0 ⇒ ac≦bc, a≦b ∧ c≦0 ⇒ ac≧bc

http://www.evernote.com/shard/s29/sh/07b04633-3473-4674-a00c-dfe41ec62aeb/e6746a682987953882c5bf12a64b4e0b

[27] [25] ∀a,b>0∈R. ∃n∈N. na>b ⇔ [26] ∀c∈R. ∃n∈N.

http://www.evernote.com/shard/s29/sh/435cd3a1-43a6-4931-8c84-18851d3e8240/7f3521d135469845a5460be764abd04f

2011/07/28

[12] x^n - y^n = (x - y) (x^{n-1} + x^{n-2}・y +…+ x・y^{n-2} + y^{n-1})

http://t.co/JhUGD2M

[11] x → 0 ⇒ sinx / x → 1

http://t.co/Y21zWhQ

[10] If {a_n} and {b_n} converge to a and b, respectively, then for any n∈N, if a_n≦b_n then a≦b./数列{a_n}, {b_n}がそれぞれa,bに収束するとき、任意のn∈Nに対しa_n≦b_nが成り立つならばa≦bである。

http://t.co/sO62Jsk

[9] The squeeze theorem on sequences/数列に関する挟み撃ちの定理

http://t.co/pZD55K4

[8] If a sequence {a_n} is convergent, {a_n} is bounded./収束する数列{a_n}は有界である。

http://t.co/cGtP4U0

[7] Any positive integer greater than 1 can be written as a unique product of prime numbers./素因数分解の一意性

http://t.co/g4Qh6p7

[6] If a sequence {a_n} has a limit, it must be the only limit of {a_n}./数列{a_n}の極限は存在するとすれば唯一つである。

http://t.co/mml9kCo

[5] If p is a natural number, then the nth root of p (n√p) is not a rational number./自然数pのn乗根は無理数である

To be modified.

[4] The Law of Cosines/(第一・第二)余弦定理

c = a cosB + b cosA
c^2 = a^2 + b^2 -2ab cosC

http://t.co/4BjPbNI

[3] The Law of Sines/正弦定理

http://t.co/RhvlmBS

[2] Infinity of prime numbers/素数は無限に存在する

http://t.co/3oLuGEj

[1] the angle sum identity/加法定理

http://t.co/aRhK2nF

http://t.co/fVTSnSx